Ermittlung der Komplexzusammensetzungen und der
Stabilititskonstanten mehrkerniger Komplexe auf Grund
rechnerischer Ausgleichsverfahren® *#

(Zur Polymerisation der Germaniumséure, 3. Mitt.)***
Von

J. Haas, N. Konopik, F. Mark und A. Neckel

Aus dem Institut fiir Physikalische Chemie der Universitit Wien
Mit 2 Abbildungen
{ Eingegangen am 30. April 1964)

Zur Ermittlung der Komplexzusammensetzungen und der
Stabilitdtskonstanten mehrkerniger Xomplexe werden rech-
nerische Ausgleichsverfahren herangezogen. Die Leistungs-
fahigkeit einiger in Frage kommender, mathematischer Me-
thoden wird diskutiert und fiir das vorliegende Problem die
Gaufsche Methode der kleinsten Fehlerquadrate als besonders
geeignet befunden. Die mathematische Analyse fiithrt im Falle
der Germaniumsiure zu foigender Aussage: In Ldsungen, die
konzentrierter als ~ 0,004m an Germaniumsiure sind, liegt
neben der undissozilerten monomeren Spezies Ge(OH)s; und
den ebenfalls einkernigen Ionen GeO(OH), und GeOz(OH)S"
ein mehrkerniges Anion mit 8 Ge-Atomen und der Ladung — 3
vor.

Folgende Gleichgewichtsreaktionen und Stabilitdtskonstan-
ten werden ormittelt: )

Ge(OH)s + OH~ = GeO(OH); + H20
Ge(OH)s + 20H- = GeOQ(OH)g“ -~ 2 Hy0O
8 Ge(OH)4 + 30H- = [Ge(OH)/ﬂg(OH)g_

* Herrn Prof. Dr. B. Hayek zum 60. Geburtstag gewidmet.
** Avszugsweise vorgetragen auf dem Chemiker-Treffen Schweiz—Oster-
reich am 4. Okt. 1963 in Innsbruck. Vgl.: Osterr. Chemiker-Ztg. 64, 294
{1963).

**#%* 8. auch die beiden vorangehenden Arbeiten (1.bzw. 2. Mitt.). Hin-
weise auf Gleichungen bzw. Abbildungen dieser Arbeiten sind mit I bzw. II
bezeichnet.
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Tonenstirke
I =0,60m I = 1,00m

log 811 = 4,704 + 0,002 4,763 + 0,004
log Bar = 5,60 -+ 0,48 6,80 =+ 0,07
log Bas = 29,55 + 0,01 30,37 + 0,02
log Ky = — 13,72 + 0,01 — 13,78 - 0,01.

Fur eine exakte Ermittlung der Stabilitdtskonstante Ba;
und damit der zweiten Dissoziationskonstante der Germanium-
séure, ist der untersuchte pH-Bereich (6 bis 10) jedoch wenig
geeignet.

Einleitung

Bei der Berechnung der Stabilitdtskonstanten mit Hilfe rechnerischer
Ausgleichsverfahren gibt man wiederum als méglich betrachtete Kombi-
nationen von Komplexen vor und bestimmt jene Komplexkombinationen
und jene Werte der Stabilitdtskonstanten (4, die eine optimale An-
passung an die experimentellen Daten erlauben. Dieser Vorgang erfolgt
in zwei Schritten. Zunéichst ermittelt man fiir jede der moglichen
Kombinationen jene Werte der Stabilitdtskonstanten, die die bestméogliche
Wiedergabe der experimentellen MeB3daten erlauben. Im 2. Schritt priift
man, welche der Kombinationen mit den ihr entsprechenden ,,besten
Konstanten“ die bestmégliche Anpassung an die experimentellen
Z(log a)py-Kurven liefert.

Im betrachteten Falle (vgl. 1. und 2. Mitt. [Mh. Chem. 95, 1141, 1166])
stehen die MeBwerte z,, deren Anzahl R betrdgt, in Form der Tripel
{ar, By, Agr} zur Verfiigung. Von den Funktionen, die man aus diesen
MeBwerten bilden kann und die den experimentellen Fehler tragen sollen,
wihlt man zweckméiBigerweise die Grofie Z (Gl. I, 5). Fiir die Beniitzung
einer elektronischen Rechenanlage ist es vorteilhaft, jede Komplex-
kombination nicht durch p, ¢ sondern durch einen fortlaufenden Index v
zu kennzeichnen. Ferner werden als Parameter nicht die Stabilitéts-
konstanten B, selbst, sondern deren dekadische Logarithmen

k, =log B, (1)
verwendet. Diese Transformation sollte innerhalb der gewliinschten

Rechengenauigkeit keinen Einflufl auf die Genauigkeit der Endwerte

haben.
Als MaB fiir die Giite der Anpassung zwischen den berechneten Werten

Z (ko, k1 ... ky—1; 2r)* und den experimentell gegebenen Z'r wird die
Summe der Fehlerquadrate beniitzt: v
F=YF,; Frzwr{zr_zy}z. (2)
[

* Im folgenden wird fir Z (ko, k1 ... ky-1; @) abkiirzend stets Z, ge-
schrieben.
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Da iiber die Genauigkeit der einzelnen MeBwerte und deren Gewichte
wy begriindete Aussagen nicht mdglich sind, werden alle Gewichte wy
im folgenden stets 1 gesetzt. Fiir die einzelnen Melwerte wird jedoch
angenommen, dall sie einer Gaupschen Normalverteilung gehorchen und
daB es sich hierbei um unabhéngige Gréfen mit festen, von den £, un-
abhéngigen Streuungen o, handelt.

Man sucht nun jene Werte fiir die Parameter k,, die die ,,beste Uber-
einstimmung” mit den experimentellen Werten Z', ergeben, d.h. die
die Summe der Fehlerquadrate zu einem Minimum machen

F = Min. (3)

Da Z, eine nichtlineare Funktion der Parameter k, ist, ist man zur
Lésung des vorliegenden Minimumproblems auf Iterationsverfahren an-
gewiesen*. Hierfiir konnen folgende drei Methoden herangezogen wer-
den:

1. Gaufsche Methode der kleinsten Quadrate,
2. Quadratische Anndherung des kleinsten Fehlerquadrates,
3. Methode des stérksten Abstiegs.

Da es sich hierbei um Standardmethoden der numerischen Mathe-
matik handelt, beschrdnken wir uns auf eine kurze Darstellung in Hin-
blick auf ihre Anwendung zur Ermittlung von Stabilitdtskonstanten.

Zy ist nicht nur von der Konzentration der freien OH-Ionen ay,
sondern auch von der experimentell nicht zuginglichen Konzentration
an freier Germaniumséure b, abhéngig. Fiir die praktische Durchfiihrung
der Rechnungen ist daher ein rasch und sicher konvergierendes Verfahren
zur Berechnung von b, notwendig. Der Ausdruck Bo— Y qa?ht By

p.q
stellt ein Polynom @-ten Grades in & dar, wobei § den gréBiten vor-
kommenden Wert fiic ¢ bedeutet.

By— 2. qaP b Bpg = Cy 4 C b+ ... 0gbt + ... CobQ=10
»sq
Oy >0
Cg 0 (4)
Cg <0

Nach der Vorzeichenregel von Descartes! besitzt das Polynom eine,
und nur eine positive reelle Wurzel, wie man bereits aus physikalischen
Uberlegungen folgern kann. Um diese Wurzel aufzusuchen, bedient man

* Die hierfiir benétigten Naherungswerte fur die Stabilitdtskonstanten
sind in der 2. Mitt. auf graphischem Wege bestimmt worden.

1 Vgl. O. Perron, Algebra II, Theorie der algebraischen Gleichungen,
Goschen 1951,

76*
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sich zweckmiBigerweise des Newton—Raphson-Verfahrens. Man gibt
einen Naherungswert fiir 6 = b® vor und erhilt nach

By— Y qu? b4 By
b +h = p(n) . ¢ (5)

;_b[z ga bwe BM]

v, 4

einen verbesserten Wert fiir b. Setzt man dieses Verfahren fort, so gelingt
es durch wiederholte Anwendung, die relative Anderung | Ab|/b be-
liebig klein zu machen und sich dem wahren Wert der Wurzel beliebig
zu ndhern. Meist geniigen nur wenige Schritte, um zu erreichen, dafl
i Ab|/b den Wert 2 - 10-7 unterschreitet, da die Konvergenz quadratisch
ist. Der Wert von b ist nach jedem Iterationsschritt fiir die Stabilitéts-
konstanten (s. u.) fiir jeden Mefipunkt 2, zu bestimmen. Als Startwert
hierfiir wird der b,-Wert des vorhergehenden Iterationsschrittes verwendet.

1. Gaufische Methode der kleinsten Fehlerquadrate
Ausgangspunkt fiir die Berechnung bildet die Gleichung fiir Z (I, 5).

Zunichst linearisiert man die Funktion Z (ko, . . . kx—1; ) am Orte von
k, =k,©® und gelangt damit zu den R ,Fehlergleichungen*
\ O Zp M ,
’Urzzrm) + Zv. 8kv Akv——"z 7 (6)
r=12..... R

in denen die Verbesserungen Ak, als Unbekannte auftreten.
Die R Fehlergleichungen kénnen in Matrixform geschrieben werden

v=gAk—I, (6a)
wobei die Elemente gr, und I, durch
0 Zym

und Iy = %'y — Z,(n)

Gry =
)

gegeben sind.
Die Bedingung, dafl die Summe der Fehlerquadrate ein Minimum

werde, ¥ 42 = Min (7)
-

erfordert eine Differentiation nach den N unbekannten Verbesserungen
A k™, womit man die N ,,Normalgleichungen erhalt:
0Zy ™) 07, 0 Zym
—— Alky= S
ok, = ok, ’ Zr ok, (

Z"r'——zr(")); (8)
pr=20,..,N-1

In Matrixform geschrieben:
GAk =L, (84a)
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wobei G = g'g und L = g'l gesetzt wird. g’ ist die zu g transponierte
Matrix.
Die Lésung dieses linearen Gleichungssystems ist gegeben durch

Ak = G-1L. (9

Fiir die Varianzen s, der Parameter %, erhilt man unter der Annahme
einer Gauflschen Verteilung fiir die MeBwerte 2,

6,2 = Gy, 1 g2, (10)
Als Niherungswert fiir ¢2 nimmt man die Bias-freie Schiitzung 52
2= RF_Y‘}E‘V (11)
an. Der mittlere Fehler der Konstante %, ist dann gegeben durch
fi=+}ok (12)
Nach der Iterationsvorschrift
k) == f (0 4 A f ) (13)

hat man die Rechnung so lange zu wiederholen, bis die relative Anderung
Ak, . . .
}]fi < T ist, wobei in den vorliegenden Untersuchungen 7 =
,w\ —_
= 4 - 1073 gewihlt wurde. Je nach Zahl der Unbekannten Ak, waren
hierzu flinf bis vierzehn Iterationen notwendig. Vielfach zeigten die
Verbesserungen A k, eine ungeféhr lineare Abmahme mit der Zahl der
Iterationen n. In solchen Fillen wurde, sobald die Konvergenz einge-
setzt hatte, zur Beschleunigung der Rechnung eine Konvergenzverbes-
serung nach dem dAitkenschen 32-Verfahren? angewendet, wodurch die
Anzahl der weiteren Tterationsschritte wesentlich verringert werden
konnte.

2. Quadratische Anndherung des Fehlerquadrates*

Weichen die Naherungswerte fiir die Parameter %, nur wenig von den
wahren Werten ab, so 148t sich die Funktion F (2) in eine Taylor-Reihe
nach den Verbesserungen A [, entwickeln. Bricht man nach dem dritten
Gliede ab, so erhdlt man: i

* Diese Methode beniitzt L. G. Sillén [Acta Chem. Scand. 16, 159 (1962);
N. Ingri und L. G. Sillén, ibid. S.173]. Wabrend jedoch Sillén die Diffe-
rentialquotienten in (15) durch die Differenzenquotienten ersetzt, werden
in der vorliegenden Arbeit in allen drei Verfahren die analytischen Ausdriicke
fur die Differentialquotienten verwendet.

* Vgl. F. B. Hildebrand, Introduction to Numerical Analysis, McGrasy-
Hill. New York-Toronto-London 1956.
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o F (kytm, .. k),
= F k™, .. K, « +Z = 62 Ag,

SZF k (n) . .]CN',_I; x)
+2,ZZ Gk Tk Ak, Ak .

(14)

Anwendung der Minimumsbedingung (3) fithrt auf den Satz der N Nor-
malgleichungen

OF _ 8 F k™, .. s e
oAL, ok, ’ .
(n) ( (10)
kOn k7—1: )
+Z Ak
- 6kv akﬂ
v=0,...N—1,

deren Losung die unbekannten Verbesserungen A k, ergibt. Der weitere
Verlauf der Rechnung ist vollkommen analog dem der Gauflschen Methode.

3. Methode des stdrksten Abstiegs

Bei dieser Methode versucht man das Minimum der Funktion F,
ausgehend von Naherungswerten fiir k, = £, entlang der Fallinie des
stidrksten Abstiegs zu erreichen. Die Richtung des stérksten Abstiegs ist
durch den negativen Gradienten von F gegeben. Man erhdlt N Glei-
chungen

)
g o0 g, 0F (komn&,é. kil @) (16)
v=0,...N—1

deren Losung verbesserte Werte fir die Parameter k, liefert. A, die
Schrittlinge im (n 4 1)ten Iterationsschritt, wird, um eine rasche Kon-
vergenz zu erreichen und ein ,,UberschieBen‘ iiber das Minimum zu ver-
hindern, folgendermafien festgelegt: Nach jedem Iterationsschritt » wird
die Fehlerquadratsumme F als quadratische Funktion von F(m, F®n-1,
Fn=2 (n » 2) dargestellt. Dag Minimum von F wird extrapoliert und
die nichste Schrittlinge so gewéhlt, dafl mit ihr dieses Minimum erreicht
wird. Auf diese Weise erzielt man eine quadratische Konvergenz.

Vergleich der Berechnungsmethoden fiir die Stabilitéts-
konstanten

Yiir das vorliegende Problem erwies sich die Gaufsche Methode der
kleinsten Quadrate als besonders zweckmifBig Die Methode der qua-
dratischen Annidherung des Fehlerquadrates zeigt ibr gegeniiber keinerlei
Vorteile, jedoch wesentliche Nachteile:
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a) Der numerische Aufwand zur Berechnung der Matrixelemente der
Normalgleichungen ist wesentlich gréfer. Dennoch bleibt die Zahl der
notwendigen Iterationsschritte, um eine vorgegebene Schranke 7' zu
unterschreiten, praktisch gleich.

b) Nach beiden Methoden (1 und 2) miissen die Startwerte fiir die
Parameter kpq in etwa denselben Grenzen vorgegeben werden, damit die
Verbesserungen A kpq konvergieren. Tritt aber fiir bestimmte Start-
werte oder pg-Paare Divergenz auf, so zeigt sie sich bei der Gaufschen
Methode bereits bei dem ersten oder zweiten Iterationsschritt an. Die
Verbesserungen A kpgy erreichen sogleich so hohe Werte, daff die Maschin-
kapazitdt der benutzten Rechenanlage iiberschritten wurde. Nach der
Methode 2 #ndern sich in einem solechen Falle die Verbesserungen A kpq
nur langsam. Sie weisen zwar in die gleiche Richtung, es bedarf jedoch
einer groferen Zahl von Iterationsschritten, bis die Divergenz eindeutig
erkannt werden kann. In keinem Falle gelang es jedoch, eine nach der
einen Methode divergierende Rechnung nach der anderen zur Konvergenz
zu bringen.

Am wenigsten geeignet erscheint die Methode des stirksten Abstiegs.
Nicht nur, daf§ der numerische Aufwand zur Berechnung von N Para-
metern (N 4+ 2)/2mal so grofl ist wie bei der Gaufischen Methode?; sie
kann auch unmittelbar keine Abschitzung der mittleren Fehler der
Parameter liefern. Die Methode wurde daher nur fiir einige Versuchs-
rechnungen beniitzt.

Rechenvorgang

Der eigentliche Rechenvorgang, unter Beniitzung einer elektronischen
Rechenmaschine, besteht aus mehreren, ineinandergreifenden Zyklen,
die wie folgt zusammengefafit werden kénnen:

T a) Berechnung der Konzentrationen an freier Germaniumsdure b
auf Grund der vorgegebenen Komplexkombination, der vorgegebenen
Néaherungswerte fiir die Stabilitdtskonstanten £, und der experimentell
ermittelten GroBen By, @ und Z. Da R MeBwerte vorliegen, ist Gl. (4)
Rmal zu 16sen. Dieser Schritt erfordert den weitaus gréBten Zeitaufwand.

b} Berechnung der Werte fiir Z,(ko™, k1™ ... kn_3"; )

und O R, by ™ K )
ok, ’
c) Aufstellen und Ldsen der Normalgleichungen. Berechnung der

Summe der Fehlerquadrate, der mittleren Fehler f, und Bildung ver-
besserter Konstanten nach k(1) = k) 4+ Ak (),

3 ¢ E.P. Box und G. A. Coutie, Proc. Inst. Elec. Engrs. 103, Part B,
Supp. No. 1, 100 (1956).
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II. Start eines neuen GroBzyklus mit den verbesserten Konstanten
k,(@+1) durch Sprung nach Ta.

II1. Unterschreiten die Verbesserungen A k, eine vorgegebene Grenze,
so sind die Iterationszyklen beendet. Die Endwerte, gekennzeichnet
durch den Index (e), (A Zy = Zy© —Z'y; F@; koo, ... EQ_,..;f9, ...

© ) werden ausgedruckt*.

MeBergebnisse und Diskussion

Messungen ber Ionenstirke I = 0,50m
Die MeBergebnisse sind in Form eines P,@-Diagramms wiedergegeben
(Abb. 1). Die fiir ein bestimmtes P,Q-Paar angegebene Zahl bedeutet die

I=050m

B+AB+A,B + A,B,

inKiammer B+AB +APBQ
1138 5¢7 216

& 4
(120+3) (572) (218)
1059 03 107
<4 <
(mz)  (430) (108) (78) (28)
ssi 2€¢5- 4 4 4
(1080) (271) (55}  (219) (59])
08 4 4 4
(1021) (164)  (227) (734) (1397)

<+
(509)
1 i 1 1 1 | 1 ] 1 —
2 3 e 5 6 7 8 ] 10 11 12 a

Abb. 1. Fehlerquadratsumme * 10! in Abhingigkeit vom P/Q-Verhiiltnis (Ionenstirke I = 0.50m)

Summe der Fehlerquadrate von 147 Meflipunkten fiir die Kombination
B, AB, AyB, ApBy (,,Dreierkombination®). Die in Klammer angefiihrten
Zahlen gelten fiir die Kombination B, AB, 4pBg (,,Zweierkombination‘’).
Man ersieht, dafl in beiden Fillen die Kombination mit dem Komplex

* Bei der Berechnung der Varianzen der Endwerte wird Fyy in Gl (11)
durch die zwei ersten Glieder einer Taylor-Entwicklung ersetzt

Fyin ~ Fleth) = fle) 4. X ok Akto + ...,
v o ky

da F(¢+1)im e-ten Iterationsschritt nicht bekannt ist.
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AsBg zu der weitaus kleinsten Fehlerquadratsumme fithrt. Als néchstes
schlieBt sich die Kombination mit dem Komplex A4B11 an. Die in der
Literatur diskutierten Komplexe 4285 und A3B; weisen eine viel héhere

Tabelle 1. Stabilitdtskonstanten und Summe der Fehlerquadrate
fiir verschiedene Komplexkombinationen B, AB, ApBg, bzw.
B, AB, A3B, ApBg bei Yonenstérke I = 0,50m

Summe der

P.Q by Fa kpg Fehlerquadrate
38 4,704 -+ 0,002 5,60 - 0,48 29,55 + 0,01 0,0052
3,8 4,706 -+ 0,002 — 29,51 4+ 0,01 0,0055
4, 11 4,707 + 0,002 — 41,05 + 0,01 0,0078
4,10 4,701 4+ 0,003 5,82 + 0,41 38,80 = 0,01 0,0107
4, 10 4,702 4 0,003 — 38,79 + 0,01 0,0108
2,5 4,695 -+ 0,003 6,56 - 0,09 18,02 &+ 0,01 0,0146
2,5 4,700 + 0,003 — 18,00 4 0,01 0,0164
5,12 4,697 4+ 0,004 6,02 + 0,38 48,07 + 0,01 0,0216
5, 12 4,699 - 0,004 — 48,06 -+ 0,01 0,0218
3,9 4,710 -£ 0,004 — 31,70 + 0,01 0,0219
2,6 4,712 + 0,004 - 20,21 + 0,01 0,0227
3,7 4,690 4 0,004 6,59 + 0,11 27,26 4 0,01 0,0245
4,12 4,709 -+ 0,004 —_— 43,23 + 0,01 0,0248
3,7 4,695 + 0,004 —_ 27,22 + 0,01 0,0271
4,9 4,688 4 0,005 6,55 4+ 0,16 36,48 + 0,02 0,0403
4,9 4,693 - 0,005 — 36,44 + 0,02 0,0430
1, 3 4,713 + 0,006 — 8,79 + 0,02 0,0509
5, 11 4,687 £ 0,006 6,50 - 0,20 45,71 4 0,02 0,0547
5, 11 4,691 + 0,006 — 45,66 + 0,02 0,0572
3, 10 4,710 4- 0,006 — 33,80 + 0,02 0,0596
2,7 4,714 4 0,007 — 22,31 4+ 0,02 0,0734
2,4 4,653 -~ 0,008 7,05 + 0,08 15,76 + 0,03 0,0835
3,6 4,665 + 0,008 6,92 4 0,11 24,91 -- 0,03 0,0954
2, 4 4,671 -+ 0,008 — 15,65 -~ 0,03 0,1021
4,8 4,671 4 0,008 6,80 4+ 0,15 34,07 -~ 0,03 0,1059
3,6 4,677 £ 0,008 — 24,79 4 0,03 0,1080
5, 10 4,674 - 0,009 6,70 + 0,19 43,26 + 0,03 0,1138
4,8 4,679 -~ 0,008 — 33,96 - 0,03 0,1147
5, 10 4,681 + 0,008 — 43,15 - 0,03 0,1203
2,8 4,710 + 0,009 — 24,30 + 0,04 0,1397

Summe der Fehlerquadrate auf, gleichgiiltig, ob man dem Vergleich eine
Dreier- oder eine Zweierkombination zugrundelegt.

Die Grofle der Fehlerquadratsumme zeigt eine deutliche Abhangig-
keit von dem P/Q-Verhdltnis. Hélt man ein bestimmtes P fest und vari-
iert @, so.durchlduft sie in einer solchen Horizontalreihe immer an jener
Stelle ein Minimum, an der das P/Q-Verhiltniz des Komplexes dem
Werte 0,38 am néchsten kommt. Man erkennt, dafi der Schnittpunkt der
Titrationskurven der Germaniumsiure (Z = 0,38) ein Kriterium fiir die
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Zusammensetzung des vorherrschenden mehrkernigen Komplexes 4pBg
darstellt. Hohere Komplexe als 458512 konnten nicht gerechnet werden,
da hierbei Konstanten gréfer als 1049 auftreten und die Kapazitdt der

Rechenanlage iiberschritten wird.

Wihrend die Stabilititskonstanten fiir die Komplexkombinationen
AB, ApBg mit allen vorgegebenen P/Q-Verhiltnissen berechnet werden
konnten, gelang die Berechnung des Parameters 89 in der Kombination
AB, AsB, ApBg nur fiir P/Q-Verhiltnisse > 0,4. Der Einflufl von 32
nimmt mit sinkendem PJQ-Verhéltnis ab; der Wert filr 821 wird
kleiner, wihrend gleichzeitig der mittlere Fehler fo; ansteigt (Tab. 1).
Vom P/Q-Verhiltnis << 0,4 an divergiert die Rechnung, und die Fehler-
quadratsumme der Dreierkombination wird gleich jener der Zweier-

kombination.

In Abb. I, 1 sind die normalisierten Kurven fiir drei in der Literatur
diskutierte Komplexkombinationen in ihren bestmdéglichen Lagen zu den
experimentellen MefBpunkten wiedergegeben. Diese Kurven wurden mit
den aus der Ausgleichsrechnung erhaltenen Konstanten berechnet.

[=100m
B+AB+AB +4,Ba
in Klammer B+ AB +AP Ba
732 4%
(797)  (479)
660 325 59 115 154
s 4 <+ <+ + +
(737) (3870 (208) (153)  (184)
7 99 138 264 433 821
N 515 21 » 5 2
(674) (282) (144)  (170)  (288) (¢52) (636)
7 127 131 320 579
2} O &
(639) (7197) (168) (342) (593)
223
1}
(29¢)
- 1 1 1 ) 1 1 o} 4 1
2 3 4 5 6 7 8 9 10 1 12

Q

Abb.2. Fehlerquadratsumme - 10* in Abhiingigkeit vem P/Q-Verhiltnis (Tonenstérke I = 1,00m)

Messungen bei Ionenstirke I = 1,00m

Die Ergebnisse der Berechnungen bei Ionenstirke I = 1,00m sind in
dem P,Q-Diagramm (Abb. 2) dargestellt. Die Zahlen bedeuten die Summe
der Fehlerquadrate von 90 MeBpunkten. Auch hier besitzt sowohl die
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Tabelle 2. Stabilitdtskonstanten und Summe der Fehlerquadrate

far

verschiedene

Komplexkombinationen B, AB, ApBg bzw.

B, AB, 432B, ApBg bei Ionenstdrke I = 1,00m

P, Q 2% By kpQ Fesllligqmlleaéi:;te
3, 8 4,763 = 0,004 6,80 4 0,07 30,37 £ 0,02 0,0099
3,8 4,770 + 0,004 - 30,35 + 0,02 0,0144
4, 11 4,763 + 0,004 6,75 4 0,08 42,26 + 0,02 0,0116
4, 11 4,770 + 0,004 — 42,24 + 0,02 0,0153
2,5 4,761 + 0,004 6,92 4 0,06 18,51 4+ 0,02 0,0127
2,5 4,771 + 0,005 — 18,49 4 0,02 0,0197
2,6 4,773 + 0,004 6,77 + 0,09 20,83 4 0,02 0,0131
2,6 4,780 -+ 0,005 — 20,82 4 0,02 0,0168
3,9 4,769 + 0,004 6,72 4 0,10 32,69 -+ 0,02 0,0138
3,9 4,775 4+ 0,005 — 32,68 4 0,02 0,0170
4,12 4,767 = 0,005 6,71 4 0,11 44,58 + 0,02 0,0154
4, 12 4,773 + 0,005 — 44,56 + 0,02 0,0184
4, 10 4,758 -+ 0,005 6,80 - 0,09 39,89 4~ 0,02 0,0159
4,10 4,766 - 0,005 — 39,87 - 0,02 0,0206
3,7 4,755 4 0,006 6,88 + 0,09 27,99 4 0,02 0,0217
3,7 4,765 + 0,006 - 27,97 & 0,03 0,0282
1,3 4,785 4 0,006 6,95 4 0,08 9,06 + 0,02 0,0223
1, 3 4,795 + 0,006 — 9,04 + 0,03 0,0294
3, 10 4,774 +— 0,006 6,66 4- 0,16 34,96 4- 0,03 0,0264
3, 10 4,779 + 0,006 — 34,95 4+ 0,03 0,0288
2,7 4,781 + 0,007 6,64 - 0,19 23,10 + 0,03 0,0320
2,7 4,786 + 0,007 — 23,09 + 0,03 0,0342
4,9 4,754 + 0,007 6,85 + 0,11 37,47 + 0,03 0,0325
4,9 4,763 + 0,007 — 37,44 + 0,03 0,0387
5, 11 4,753 + 0,008 6,83 4- 0,14 46,94 + 0,03 0,0424
5, 11 4,762 -+ 0,008 — 46,92 + 0,04 0,0479
3, 11 4,778 + 0,008 6,59 4 0,24 37,19 + 0,04 0,0433
3, 11 4,783 -+ 0,008 — 37,18 4+ 0,04 0,0452
2,4 4,744 + 0,009 7,09 4 0,08 16,12 £+ 0,03 0,0487
2, 4 4,761 4+ 0,009 - 16,05 = 0,04 0,0639
3,6 4,748 £ 0,010 6,97 - 0,12 25,54 + 0,04 0,0575
3,6 4,761 + 0,010 — 25,48 4 0,04 0,0674
2, 8 4,787 4+ 0,009 6,54 ~ 0,32 25,30 + 0,05 0,0579
2, 8 4,790 + 0,009 e 25,30 4+ 0,05 0,0593
3,12 4,781 1+ 0,009 6,54 + 0,33 39,37 &+ 0,05 0,0621
3, 12 4,785 + 0,009 — 39,37 £ 0,05 0,0636
4, 8 4,751 + 0,010 6,89 4 0,15 34,97 + 0,04 0,0660
48 4,761 & 0,010 - 34,92 + 0,05 0,0737
5, 10 4,753 4+ 0,011 6,84 1 0,17 44,41 + 0,05 0,0732
5, 10 4,762 4 0,010 — 44,36 + 0,05 0,0797

Dreierkombination als auch die Zweierkombination mit dem Komplex
A3Bg die kleinsten Fehlerquadrate. Die niichstgiinstigeren Kombinationen
sind auch hier jene mit der Spezies 44B811. Im Gegensatz zu den Messungen
bei Tonenstidrke I = 0,50m bewirkt hier die Hinzunahme des Parameters
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ko1 eine deutliche Erniedrigung der Summe der Fehlerquadrate. Die
Abhéngigkeit des Wertes fiir ko; von dem P/@-Verhiltnis zeigt die gleiche
Tendenz wie im Falle I = 0,50m (vgl. auch Tab. 2).

Rechnerische Versuche mit anderen Komplexkombinationen

Auf Grund der in der 1. Mitt. angefithrten gpory-Werte wurden auch
Komplexkombinationen AB, ABs;, ApBg untersucht, die alle zu sehr
hohen Fehlerquadratsummen bzw. zu divergierenden Werten fiir {12
fithrten.

Es erhebt sich nun die Frage, ob die Hinzunahme eines vierten Kom-
plexes (etwa die Kombination 4B, 428, A Br, ApBg) zu einer weiteren
Verminderung der Fehlerquadratsumme fithrt. Auf Grund einiger Ver-
suchsrechnungen kann gesagt werden, dafi die Hinzunahme eines weiteren
Komplexes in manchen Féllen zwar eine geringe Verkleinerung der Summe
der Fehlerquadrate bewirkt, daB sich aber dann die Fehlerquadratsummen
verschiedener Kombinationen nur mehr unwesentlich voneinander unter-
scheiden, so dafl mehrere Kombinationen gleichwertig erscheinen.

Einfluf systematischer Fehler

Tiir die Berechnungen wird eine vollig statistische Fehlerverteilung
vorausgesetzt. Die Titrationskurven kénnen jedoch mit folgenden
systematischen Fehlern behaftet sein:

" a) Fehler in der Ermittlung von Eop baw. K, (1. Mitt., S. 1147). Sie
fithren zu einer Parallelverschiebung der Titrationskurven in Richtung
der log a-Achse, ohne die Z-Werte praktisch zu dndern. Ein Fehler von
+ 0,2 mV entspricht einem Fehler von 4 0,003 in loga.

b) Fehler in der Ermittlung von 4o, bedingt durch die Riicktitration
der vor Beginn jeder Titrationsreihe zugesetzten Menge an HC1O4 (1. Mitt.,
S. 1147). Er wird bei einem Volumen von 10 ml einen Betrag von 4 0,1%,
nicht iiberschreiten und bewirkt in allen Z-Werten etwa den gleichen
absoluten Fehler von -+ 0,0025.

¢) Mogliche systematische Abweichungen der mit der Glaselektrode
gemessenen Potentialwerte, besonders bei hohen OH--Ionenkonzentra-
tionen.

d) Anderung der Aktivitatskoetfizienten mit variierender OH—-Ionen-
konzentration, insbesondere bei niedriger Salzkonzentration.

Dagegen werden die Fehler in By und By die Titrationskurven prak-
tisch nicht beeinflussen. '
Vergleich der Ergebnisse bei Ionmensidrke I = 0,50m und I = 1,00m

In beiden MeBreihen vermag die Komplexkombination AB, 4.8,
AaBg die experimentellen MeBpunkte am besten wiederzugeben. Die
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hohere Fehlerquadratsumme der Messungen bei I = 1,00m (vgl. Abb.2
und Tab. 3) kann auf den kleineren MeBbereich und die Verwendung
einer Kalomel-Bezugselektrode zuriickgefithrt werden.

Tabelle 3
I Zahl Summe Durchschnittl, Fehler-
fm] der Mefipunkte der Fehlerquadrate quadrat pro MeBpunkt
1,00 90 0,0099 0,000110
0,50 147 0,0052 0,000035

Die Konstanten fpq fiir £ = 0,50m und I = 1,00m kann man nicht
unmittelbar miteinander vergleichen, da log K, fiir die beiden Ionen-
stdrken verschieden ist. Einen besseren Vergleich erlauben die Dissozi-
ationskonstanten Kp4, die die Lage des Gleichgewichtes

g B+ 2pH:0 = 4,B; + p H30+
beschreiben und nach der Beziehung
Kpg = Ppg Ku?

erhalten werden konnen (vgl. Tab. 4).

Tabelle 4
I=0,50m-NaClO, I = 1,00m-XaClO,
k11 = 4,704 4+ 0,002 log Ky = — 9,016 ki1 = 4,763 4+ 0,004 log K11 = — 9,016
ko1 = 5,60 4 0,48 log Kg1 = — 21,84 koy = 6,80 4 0,07 log Koy = — 20,76
kag = 29,65 -- 0,01 log Kzg = — 11,61 k3g = 30,837 £+ 0,02 log Kgg = — 10,97
log Ky = — 13,72 log Kyp = — 13,78

Von den in Tab. 4 angegebenen Konstanten ist der Wert fiir kg —
wie auch aus dem grofien mittleren Fehler hervorgeht — mit der grofiten
Unsicherheit behaftet. Der Parameter ko; wird vor allem durch die
Mefpunkte bei hohen Z-Werten bestimmt, die auch am ehesten syste-
matische Fehler aufweisen. Um den Einflufl eines derartigen systemati-
schen Fehlers abzuschétzen, wurden 32 MeBpunkte der hochsten Z-Werte
um nur 0,003 zu niedrigeren log a-Werten verschoben — einem Betrag,
der etwa der Fehlergrenze in log a entspricht. In diesem Fall erhilt man
fiir k9; einen Wert von kgy = 6,00 4 0,25. Die Messungen im untersuchten
Konzentrationsbereich eignen sich daher nicht fiir eine exakte Ermittlung
von kg;. Offenbar aus &hnlichen Erwigungen haben N.Ingri und
G. Schorsch® kgy durch Messungen bei pH-Werten > 11 bestimmt.

4 N. Ingri und G. Schorsch, Acta Chem. Scand. 17, 590 (1963).
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Die in der vorliegenden Arbeit fiir I = 0,50m-NaClO; gefundenen
Werte fiir die Stabilitdtskonstanten stimmen mit den von N. Ingri5 in
0,5m-NaCl erhaltenen, kiirzlich publizierten Werten gut iiberein:

k11 = 4,678 4 0,006 log K11 = — 9,022
ko = 6,14 -+ 0,13 log K9y = — 21,26
ksg = 29,14 - 0,05 log K3s = — 11,96
log Ky = — 13,70, - 0,03.

Um eine Vorstellung iiber die Konzentrationen an polynuklearer
Spezies zu erhalten, wurde der Anteil an A3Bg fiir den Maximalwert der
Polymerisation (d.i. Z = 0,38) mit Hilfe der Konstanten k1; und ksg
berechnet. Wie Tab.5 zeigt, kann die Germaniumsiure bei kleinen
Konzentrationen (< 0,004m) als monomer angesehen werden. Bei der
héchsten untersuchten Ge-Konzentration liegen 7 Mol%, A3Bg vor. Wenn
man jedoch beriicksichtigt, daBl der Komplex 8 Ge-Atome enthilt, so
bedeutet dies, dafl etwas mehr als die Hélfte der eingesetzten Ge-Siure
in mehrkerniger Form vorliegt.

Tabelle 5
Z=0,38 F11=4,704 %35 =29,55

B, - 108 b-10° 43 By A; B,

[m] a[m] [l [m] B, £ . 100 (Mo1%/,)
0,02388 1,239 6,377 0,001683 7,05
0,01990 1,230 6,150 0,001233 6,20
0,01592 1,225 5,843 0,0008075 5,07
0,01194 1,216 5,376 0,0004043 3.39
0,00796 1,208 4,475 0,00009169 1,15
0,00398 1,205 2,464 0,0000007693 0,02

Untersuchungen, wie die oben beschriebenen, gestatten weder eine
Aussage fiber die Struktur der in Losung auftretenden Spezies noch iiber
die Anzahl der Wassermolekiile, die bei der Komplexbildung abgespaltet
werden. Der in Losung festgestellte Komplex A3Bg konnte auf Grund
der Strukturuntersuchungen von H. Nowotny und A. Wittmann® an den
Heptagermanaten [z. B. NagHGe7;016(H20)s] und von N.Ingri und
G. Lundgren” an NasGegOg als GegOi4(H20)5(0H)38~-Ion vorliegen?®.

Die numerischen Rechnungen fiir die Ausgleichsverfahren wurden auf
der elektronischen Rechenanlage (Burroughs Datatron 205) des Institutes
fiir Statistik der Universitit Wien ausgefithrt.

5 N.Ingri, Acta Chem. Scand. 17, 597 (1963).
8 H. Nowotny und A. Wittmann, Mh. Chem. 85, 558 (1954).
7 N.Ingr: und G. Lundgren, Acta Chem. Scand. 17, 617 (1963).
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